Haptic Communication for the Tactile Internet

Eckehard Steinbach
Technical University of Munich (TUM)
Chair of Media Technology

European Wireless, EW’17
Dresden, May 17, 2017
Telepresence

Although conversational services are bidirectional, audiovisual data communication is 2x unidirectional.
Telepresence + Haptics = Teleoperation

Operator performance increases significantly in telemanipulation of remote objects when haptic feedback is provided

In this talk: **Human-in-the-loop TI**
- Focus is on **Quality of Interaction**
- Remote environment can be real or virtual
Haptics

Kinesthetic Perception

Image Source: Katsunari Sato, Dept. of MEIP, The University of Tokyo/Japan

position & forces

Tactile Perception

sense of touch of the skin

Perception of
form, position, surface texture, stiffness, friction, temperature, etc.
Teleoperation with kinesthetic feedback

Closed loop communication

- **Position / Velocity**
- **Force / Torque Feedback**

Network

Operator

Teleoperator

- **1000 – 4000 Hz sampling/packet rate**
- **Very strict delay constraints (< 10ms)**
- **Lack of realism (hard contacts / surface details)**
Demo: Strict delay constraint

Operator ↔ Force Feedback ↔ Teleoperator

Delay: 0 ms
Teleoperation with tactile feedback

Open loop communication

- Relaxed delay constraints
- Improved realism
Communication of kinesthetic/tactile data

- Communication of **kinesthetic** information
- Communication of **tactile** information
Communication of **kinesthetic data**: Packet rate reduction

Perceptual haptic data reduction [1]
- exploits limits of human haptic perception
- packet rate reduction of up to 90% (no perceivable distortion)
- leads to a variable packet rate → *event-based sampling and communication*

Communication of kinesthetic data: Time-delayed teleoperation

- delay
- damping (control)
- transparency
Time-delayed Teleoperation: Passivity-based

Stable haptic interaction for delays 10ms ... 100ms

Energy dissipation leads to reduced transparency

B. Hannaford, and J. Ryu, 2002
Time-delayed Teleoperation: Model-mediated

Stable haptic interaction for delays 10ms ... 200ms

Model errors / updates lead to reduced transparency

B. Hannaford, 1989
P. Mitra and G. Niemeyer, 2008
Demo: TDPA + Perceptual coding für different RTT

delay: 0 ms
Control & communication for different delay ranges

- Best possible performance
- Wave variable approach
- Time-domain passivity control
- Model-mediated teleoperation
- End-to-end delay
Joint optimization of communication and control

Joint optimization including the knowledge about the human user
Shared Haptic Virtual Environments (SHVEs)
Example: Physical coupling of two users in a VE

Joint work with W. Kellerer and his team (LKN@TUM)
Communication of kinesthetic/tactile data

- Communication of **kinesthetic** information
- Communication of **tactile** information
Vibrotactile communication
Communication of tactile information

Vibrotactile signals are similar to speech signals

R. Chaudhari et al., IEEE JSTSP 2015

Eckehard Steinbach
Haptic Communication for the Tactile Internet
Sine detection thresholds and masking

Thresholds [dB re 1 m/s²]

Frequency [Hz]

-22
-28
-34
-40
-46
-52
-58
-64
-70

Masking thresholds
BPF responses
Detection thresholds (literature)
Detection thresholds

R. Chaudhari et al., IEEE JSTSP 2015

custom-made stylus-like handle mounted on Mini SmartShaker™
Surface Material Perception

- Hardness (Hard/Soft)
 - Friction (Moist/Dry, Sticky/Slippery)
 - Warmness (Warm/Cold)
- Roughness
 - Fine roughness (Rough/Smooth)
 - Macro roughness (Uneven, Relief)

Source: Okamoto et al., 2013
Surface Analysis Devices

- Force Sensing Resistors (FSR)
- Acceleration Sensor
- Stainless Steel Tooltip
- DAQ NI SCB-68
- Microphone CMP-MIC8
- Magnifying Lens
Surface Analysis Devices

Texplorer Device

- Reflectance Signal
- SMA

Eckehard Steinbach
Haptic Communication for the Tactile Internet
25
Tactile feedback displays: Electrovibration-based
Tactile feedback displays: Tactile Mouse
What about video?

Light Source (LED) | Camera | Processing, Transmission | Display | Light Sink (PT)

Measuring G2G delay

Build instructions, Android Application and Arduino source code are available under http://tinyurl.com/G2GDelay

Source: www.android.com

Source: www.arduino.cc
G2G Delay Survey: Results

- Video conferencing systems
- G2G delay > 200ms
G2G Delay Survey: Results

- Video feedback in drone remote control
- DJI > 250ms (focus on high quality and reliability)
- FatShark analog 28ms
- FatShark digital 55ms

Source: www.droneuplift.com
G2G Delay Survey: Results

- Smartphones camera app 80-100ms

Source: www.pcadvisor.co.uk
G2G Delay Survey: Results

- Ultra-low delay solution
 LMT@TUM
- 15ms (uncompressed video)
- 19ms (compressed video)
Demo video

Ultra-Low Delay Video Transmission
and Video Delay Measurement

Chair of Media Technology, Technical University of Munich
Standardization

https://standards.ieee.org/develop/project/1918.1.html
Task Group: Haptic Codecs for the Tactile Internet

http://grouper.ieee.org/groups/1918/1/haptic_codecs/index.html

- IEEE P1981.1.1

- **Chair**: Eckehard Steinbach (TUM), **Vice Chair**: Mohammad Eid (NYUAD), **Secretary**: Qian Liu (Dalian Univ.)

- **Scope**
 - Protocol for the *exchange of device capabilities* (handshaking)
 - (Perceptual) codec for closed-loop *kinesthetic* information
 - (Perceptual) codec for open-loop *tactile* information
Summary

- **Haptic communication** as a key technology for physical interaction across networks
- Fundamental difference between *kinesthetic* interaction (closed-loop) and *tactile* feedback (open-loop)
- Compression of kinesthetic data **fundamentally different** from A/V
- *Time-delayed teleoperation* requires joint optimization of communication, compression and control
- Different *control approaches* for different delay ranges
- *Tactile feedback displays* open new opportunities
- G2G delay of *video communication solutions* needs to be further reduced
Acknowledgments

- **Current and former PhD students:** P. Hinterseer, J. Kammerl, F. Brandi, R. Chaudhari, X. Xu, B. Cizmeci, C. Schuwerk, Matti Strese

- **Collaborators**
 - S. Chaudhuri (IIT Bombay)
 - S. Hirche, M. Buss and I. Vittorias (TUM)
 - B. Färber and V. Nitsch (University of Armed Forces Munich)
 - A. El Saddik and J. Cha (University of Ottawa)
 - K. Kuchenbecker (University of Pennsylvania)
 - S. Choi (POSTECH, Korea)

- **Funding**
 - DFG SFB 453, DFG STE 1093/4-1, 1093/4-2, 1093/6-1
 - ERC Grant 258941 “ProHaptics”
 - European-Brazilian Network for Academic Exchange EUBRANEX
The end

Thank you!